Cs3CoCl5 ($K3_{1}$) Structure : A5BC3_tI36_140_cl_b_ah

Picture of Structure; Click for Big Picture
Prototype : Cl5CoCs3
AFLOW prototype label : A5BC3_tI36_140_cl_b_ah
Strukturbericht designation : $K3_{1}$
Pearson symbol : tI36
Space group number : 140
Space group symbol : $I4/mcm$
AFLOW prototype command : aflow --proto=A5BC3_tI36_140_cl_b_ah
--params=
$a$,$c/a$,$x_{4}$,$x_{5}$,$z_{5}$


Other compounds with this structure

  • Cs3CoBr5, CsBa5Ti2Se9Cl, Rb3ZnH5, Cs3ZnH5, (Sr3–x$Ax)AlO4F, ($A$ = Ba, Ca), Ba3$M$O5, ($M$ = tetravalent metal, and $M3Mg(BH4)5, ($M$ = Rb, Cs)

  • We show the structure using the data taken at 4.2 K.

Body-centered Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} & = & \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Cs I} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} & = & \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Cs I} \\ \mathbf{B}_{3} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Co} \\ \mathbf{B}_{4} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Co} \\ \mathbf{B}_{5} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Cl I} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Cl I} \\ \mathbf{B}_{7} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +2x_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Cs II} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - 2x_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Cs II} \\ \mathbf{B}_{9} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Cs II} \\ \mathbf{B}_{10} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Cs II} \\ \mathbf{B}_{11} & = & \left(\frac{1}{2} +x_{5} + z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +2x_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(16l\right) & \mbox{Cl II} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} - x_{5} + z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - 2x_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(16l\right) & \mbox{Cl II} \\ \mathbf{B}_{13} & = & \left(x_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5} + z_{5}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(16l\right) & \mbox{Cl II} \\ \mathbf{B}_{14} & = & \left(-x_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5} + z_{5}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(16l\right) & \mbox{Cl II} \\ \mathbf{B}_{15} & = & \left(x_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5} - z_{5}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(16l\right) & \mbox{Cl II} \\ \mathbf{B}_{16} & = & \left(-x_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5} - z_{5}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(16l\right) & \mbox{Cl II} \\ \mathbf{B}_{17} & = & \left(\frac{1}{2} +x_{5} - z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +2x_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(16l\right) & \mbox{Cl II} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} - x_{5} - z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - 2x_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(16l\right) & \mbox{Cl II} \\ \end{array} \]

References

  • B. N. Figgis, R. Mason, A. R. P. Smith, and G. A. Williams, Neutron Diffraction Structure of Cs3CoCl5 at 4.2 K, Acta Crystallogr. Sect. B Struct. Sci. 36, 509–512 (1980), doi:10.1107/S0567740880003731.

Geometry files


Prototype Generator

aflow --proto=A5BC3_tI36_140_cl_b_ah --params=

Species:

Running:

Output: