Cu3[Fe(CN)6]2$· x$H2O ($J2_{5}$, $x ≈ 3$) Structure : A6B9CD2E6_cF96_225_e_bf_a_c_e

Picture of Structure; Click for Big Picture
Prototype : C12Cu3Fe2(H2O)xN12
AFLOW prototype label : A6B9CD2E6_cF96_225_e_bf_a_c_e
Strukturbericht designation : $J2_{5}$
Pearson symbol : cF96
Space group number : 225
Space group symbol : $Fm\bar{3}m$
AFLOW prototype command : aflow --proto=A6B9CD2E6_cF96_225_e_bf_a_c_e
--params=
$a$,$x_{4}$,$x_{5}$,$x_{6}$


Other compounds with this structure

  • Cd3[Co(CN)6]2, Co3[Co(CN)6]2, Cu3[Fe(CN)6]2, Fe3[Fe(CN)6]2, Td3[Fe(CN)6]2, and Zn3[Fe(CN)6]2

  • These compounds form a class called Prussian Blue Analogs, where Prussian Blue is Fe3[Fe(CN)6]2.
  • (van Bever, 1938) studied what he believed to be the hydrated form of this structure, with $x ≈ 3$. In that case, the water molecules occupy the ($8c$) sites, but each site is only occupied 75% of the time. The water sites are surrounded by a tetrahedron of copper ($32f$) sites, but only 6.25% of these sites are occupied.
  • (Weiser, 1942) studied the anhydrous form. They found that in this case the copper atoms that were on the ($32f$) sites replace the water molecules on the ($8c$) site, and this site is now fully occupied with copper.
  • To convert from the hydrated to anhydrous structure, remove the copper atoms from the ($32f$) sites in the CIF or POSCAR file, and relabel the ($8c$) site as copper.
  • For a picture of the resulting structure see (Jiao, 2017).
  • The AFLOW label models the structure as if the sites were fully occupied.

Face-centered Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Fe} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Cu I} \\ \mathbf{B}_{3} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{4} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{5} & = & -x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} & \left(24e\right) & \mbox{C} \\ \mathbf{B}_{6} & = & x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} & \left(24e\right) & \mbox{C} \\ \mathbf{B}_{7} & = & x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{y}} & \left(24e\right) & \mbox{C} \\ \mathbf{B}_{8} & = & -x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{y}} & \left(24e\right) & \mbox{C} \\ \mathbf{B}_{9} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{z}} & \left(24e\right) & \mbox{C} \\ \mathbf{B}_{10} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{z}} & \left(24e\right) & \mbox{C} \\ \mathbf{B}_{11} & = & -x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} & \left(24e\right) & \mbox{N} \\ \mathbf{B}_{12} & = & x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} & \left(24e\right) & \mbox{N} \\ \mathbf{B}_{13} & = & x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{y}} & \left(24e\right) & \mbox{N} \\ \mathbf{B}_{14} & = & -x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{y}} & \left(24e\right) & \mbox{N} \\ \mathbf{B}_{15} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{z}} & \left(24e\right) & \mbox{N} \\ \mathbf{B}_{16} & = & -x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{z}} & \left(24e\right) & \mbox{N} \\ \mathbf{B}_{17} & = & x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + x_{6}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Cu II} \\ \mathbf{B}_{18} & = & x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2}-3x_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}} + x_{6}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Cu II} \\ \mathbf{B}_{19} & = & x_{6} \, \mathbf{a}_{1}-3x_{6} \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}}-x_{6}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Cu II} \\ \mathbf{B}_{20} & = & -3x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}}-x_{6}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Cu II} \\ \mathbf{B}_{21} & = & -x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + 3x_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}}-x_{6}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Cu II} \\ \mathbf{B}_{22} & = & -x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2}-x_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}}-x_{6}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Cu II} \\ \mathbf{B}_{23} & = & -x_{6} \, \mathbf{a}_{1} + 3x_{6} \, \mathbf{a}_{2}-x_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}} + x_{6}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Cu II} \\ \mathbf{B}_{24} & = & 3x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2}-x_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + x_{6}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Cu II} \\ \end{array} \]

References

  • A. K. van Bever, The Crystal Structure of Some Ferricyanides with Bivalent Kations, Rec. Trav. Chim. Pays–Bas 57, 1259–1268 (1938), doi:10.1002/recl.19380571108.
  • H. B. Weiser, W. O. Milligan, and J. B. Bates, X–ray Diffraction Studies on Heavy–metal Iron–cyanides, J. Phys. Chem. 46, 99–111 (1942), doi:10.1021/j150415a013.
  • S. Jiao, J. Tuo, H. Xie, Z. Cai, S. Wang, and J. Zhu, The electrochemical performance of Cu3[Fe(CN)6]2 as a cathode material for sodium–ion batteries, Mater. Res. Bull. 86, 194–200 (2017), doi:10.1016/j.materresbull.2016.10.019.

Geometry files


Prototype Generator

aflow --proto=A6B9CD2E6_cF96_225_e_bf_a_c_e --params=

Species:

Running:

Output: