NaSbF4(OH)2 ($J1_{12}$) Structure : A6BC_hP16_163_i_b_c

Picture of Structure; Click for Big Picture
Prototype : F4NaSb
AFLOW prototype label : A6BC_hP16_163_i_b_c
Strukturbericht designation : $J1_{12}$
Pearson symbol : hP16
Space group number : 163
Space group symbol : $P\bar{3}1c$
AFLOW prototype command : aflow --proto=A6BC_hP16_163_i_b_c
--params=
$a$,$c/a$,$x_{3}$,$y_{3}$,$z_{3}$


  • The ($12i$) site, which we show as occupied by fluorine, is actually occupied by a random mixture of fluorine atoms (67%) and OH radicals (33%).
  • Although the replacement of fluorine by OH does not affect the shape of the Sb–(F,OH)6 ions, it has a profound effect on the structure, as can be seen by looking at NaSbF6 and NaSb(OH)6 ($J1_{11}$).

Trigonal Hexagonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{Na} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{Na} \\ \mathbf{B}_{3} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(2c\right) & \mbox{Sb} \\ \mathbf{B}_{4} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(2c\right) & \mbox{Sb} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{3}+y_{3}\right)a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{F} \\ \mathbf{B}_{6} & = & -y_{3} \, \mathbf{a}_{1} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{3}-y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{F} \\ \mathbf{B}_{7} & = & \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}+\frac{1}{2}y_{3}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{F} \\ \mathbf{B}_{8} & = & -y_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{3}+y_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{F} \\ \mathbf{B}_{9} & = & \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{F} \\ \mathbf{B}_{10} & = & x_{3} \, \mathbf{a}_{1} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \left(x_{3}-\frac{1}{2}y_{3}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{F} \\ \mathbf{B}_{11} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{3}-y_{3}\right)a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{F} \\ \mathbf{B}_{12} & = & y_{3} \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{3}+y_{3}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{F} \\ \mathbf{B}_{13} & = & \left(x_{3}-y_{3}\right) \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}-\frac{1}{2}y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{F} \\ \mathbf{B}_{14} & = & y_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{3}-y_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{F} \\ \mathbf{B}_{15} & = & \left(x_{3}-y_{3}\right) \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{3}-y_{3}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{F} \\ \mathbf{B}_{16} & = & -x_{3} \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(-x_{3}+\frac{1}{2}y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{F} \\ \end{array} \]

References

  • N. Schrewelius, Röntgenuntersuchung der Verbindungen NaSb(OH)6, NaSbF6, NaSbO3 und gleichartiger Stoffe, Z. Anorg. Allg. Chem. 238, 241–254 (1938), doi:10.1002/zaac.19382380209.

Found in

  • R. T. Downs and M. Hall–Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Geometry files


Prototype Generator

aflow --proto=A6BC_hP16_163_i_b_c --params=

Species:

Running:

Output: