Columbite (FeNb2O6, $E5_{1}$) Structure : AB2C6_oP36_60_c_d_3d

Picture of Structure; Click for Big Picture
Prototype : FeNb2O6
AFLOW prototype label : AB2C6_oP36_60_c_d_3d
Strukturbericht designation : $E5_{1}$
Pearson symbol : oP36
Space group number : 60
Space group symbol : $Pbcn$
AFLOW prototype command : aflow --proto=AB2C6_oP36_60_c_d_3d
--params=
$a$,$b/a$,$c/a$,$y_{1}$,$x_{2}$,$y_{2}$,$z_{2}$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$,$x_{5}$,$y_{5}$,$z_{5}$


Other compounds with this structure

  • CaNb2O6 (fermsmite) and Zr5Ti7O24

  • The original Strukturbericht reference uses (Fe,Mn)Nb2O6 as the prototype for columbite/$E5_{1}$.

Simple Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & y_{1} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & y_{1}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Fe} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{1}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{1}\right)b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Fe} \\ \mathbf{B}_{3} & = & -y_{1} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -y_{1}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Fe} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{1}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{1}\right)b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Fe} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Nb} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{2}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Nb} \\ \mathbf{B}_{7} & = & -x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{2}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Nb} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{2}\right) \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{2}\right)b \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Nb} \\ \mathbf{B}_{9} & = & -x_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Nb} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{2}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{2}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Nb} \\ \mathbf{B}_{11} & = & x_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Nb} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{2}\right) \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{2}\right)b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Nb} \\ \mathbf{B}_{13} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O I} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{3}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O I} \\ \mathbf{B}_{15} & = & -x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O I} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{3}\right)b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O I} \\ \mathbf{B}_{17} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O I} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{3}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O I} \\ \mathbf{B}_{19} & = & x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O I} \\ \mathbf{B}_{20} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{3}\right)b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O I} \\ \mathbf{B}_{21} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O II} \\ \mathbf{B}_{22} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{4}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O II} \\ \mathbf{B}_{23} & = & -x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O II} \\ \mathbf{B}_{24} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{4}\right)b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O II} \\ \mathbf{B}_{25} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O II} \\ \mathbf{B}_{26} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O II} \\ \mathbf{B}_{27} & = & x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O II} \\ \mathbf{B}_{28} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O II} \\ \mathbf{B}_{29} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O III} \\ \mathbf{B}_{30} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{5}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O III} \\ \mathbf{B}_{31} & = & -x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O III} \\ \mathbf{B}_{32} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{5}\right) \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{5}\right)b \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O III} \\ \mathbf{B}_{33} & = & -x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O III} \\ \mathbf{B}_{34} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{5}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O III} \\ \mathbf{B}_{35} & = & x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O III} \\ \mathbf{B}_{36} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{5}\right) \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{5}\right)b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O III} \\ \end{array} \]

References

  • P. Bordet, A. McHale, A. Santoro, and R. S. Roth, Powder neutron diffraction study of ZrTiO4, Zr5Ti7O24, and FeNb2O6, J. Solid State Chem. 64, 30–46 (1986), doi:10.1016/0022-4596(86)90119-2.
  • C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928–1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Found in

  • R. T. Downs and M. Hall–Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Geometry files


Prototype Generator

aflow --proto=AB2C6_oP36_60_c_d_3d --params=

Species:

Running:

Output: