$\beta$–B2H6 Structure : AB3_mP16_14_e_3e

Picture of Structure; Click for Big Picture
Prototype : $\beta$–B2H6
AFLOW prototype label : AB3_mP16_14_e_3e
Strukturbericht designation : None
Pearson symbol : mP16
Space group number : 14
Space group symbol : $P2_{1}/c$
AFLOW prototype command : aflow --proto=AB3_mP16_14_e_3e
--params=
$a$,$b/a$,$c/a$,$\beta$,$x_{1}$,$y_{1}$,$z_{1}$,$x_{2}$,$y_{2}$,$z_{2}$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$


  • (Mark, 1925) studied a variety of B2H6 structures, including the one given Strukturbericht designation $D41 by (Ewald, 1931). (Smith, 1965) refined this structure, including the hydrogen positions.
  • This structure shares the same AFLOW designation, AB3_mP16_14_e_3e, as the B2H6 structure defined by (Yao, 2011). If we remove the hydrogen atoms from either of these structures we get the A10 ($\alpha$–Hg) structure, but that is more closely associated with the Yao structure than it is with this one.
  • (Smith, 1965) presented the crystallographic information for this structure in the $P21/n$, unique axis $c$, setting of space group #14. We used FINDSYM to put the information into the standard $P2_{1}/c$, unique axis $b$, setting. This involved modifications of the primitive vectors beyond a simple rotation.

Simple Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & \left(x_{1}a+z_{1}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{1}b \, \mathbf{\hat{y}} + z_{1}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{B} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{1}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{1}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{1}a - z_{1}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{1}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{1}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{B} \\ \mathbf{B}_{3} & = & -x_{1} \, \mathbf{a}_{1}-y_{1} \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & \left(-x_{1}a-z_{1}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{1}b \, \mathbf{\hat{y}}-z_{1}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{B} \\ \mathbf{B}_{4} & = & x_{1} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{1}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{1}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{1}a + z_{1}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{1}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{1}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{B} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \left(x_{2}a+z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{H I} \\ \mathbf{B}_{6} & = & -x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{2}a - z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{2}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{2}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{H I} \\ \mathbf{B}_{7} & = & -x_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \left(-x_{2}a-z_{2}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}}-z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{H I} \\ \mathbf{B}_{8} & = & x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{2}a + z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{2}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{H I} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{H II} \\ \mathbf{B}_{10} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{3}a - z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{3}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{H II} \\ \mathbf{B}_{11} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{H II} \\ \mathbf{B}_{12} & = & x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{3}a + z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{3}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{H II} \\ \mathbf{B}_{13} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{H III} \\ \mathbf{B}_{14} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{4}a - z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{H III} \\ \mathbf{B}_{15} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}a-z_{4}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}}-z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{H III} \\ \mathbf{B}_{16} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{4}a + z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{4}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{H III} \\ \end{array} \]

References

  • H. W. Smith and W. N. Lipscomb, Single–Crystal X–Ray Diffraction Study of $\beta$–Diborane, J. Chem. Phys. 43, 1060–1064 (1965), doi:10.1063/1.1696820.
  • H. Mark and E. Pohland, IV. Über die Gitterstruktur des Äthans und des Diborans, Zeitschrift für Kristallographie – Crystalline Materials 62, 103–112 (1925), doi:10.1524/zkri.1925.62.1.103.
  • P. P. Ewald and C. Hermann, eds., Strukturbericht 1913–1928 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1931).
  • Y. Yao and R. Hoffmann, BH3 under Pressure: Leaving the Molecular Diborane Motif, J. Am. Chem. Soc. 133, 21002–21009 (2011), doi:10.1021/ja2092568.

Geometry files


Prototype Generator

aflow --proto=AB3_mP16_14_e_3e --params=

Species:

Running:

Output: