Marialite Scapolite [Na4Cl(AlSi3)3O24, $S6_{4}$] Structure : AB4C24D12_tI82_87_a_h_2h2i_hi

Picture of Structure; Click for Big Picture
Prototype : ClNa4O24(Al3Si9)
AFLOW prototype label : AB4C24D12_tI82_87_a_h_2h2i_hi
Strukturbericht designation : $S6_{4}$
Pearson symbol : tI82
Space group number : 87
Space group symbol : $I4/m$
AFLOW prototype command : aflow --proto=AB4C24D12_tI82_87_a_h_2h2i_hi
--params=
$a$,$c/a$,$x_{2}$,$y_{2}$,$x_{3}$,$y_{3}$,$x_{4}$,$y_{4}$,$x_{5}$,$y_{5}$,$x_{6}$,$y_{6}$,$z_{6}$,$x_{7}$,$y_{7}$,$z_{7}$,$x_{8}$,$y_{8}$,$z_{8}$


  • (Papike, 1965) found that the composition of the Si–II ($16i$) site was actually Al0.458Si0.542. This is richer in aluminum than assumed by Pauling, who gave the total aluminum/silicon composition as AlSi3 (Pauling, 1930). If we assume that the Si–I ($8h$) site is only filled by silicon atoms, then Pauling's composition for the Si–II site is Al0.375Si0.625. The name marialite scapolite distinguishes this from meionite scapolite, which replaces the sodium atoms by calcium but also includes SiO4 and CO3, which replace the chlorine atoms. According to Pauling, The minerals of the scapolite group can be considered as solid solution of two end–members, marialite, Na4Al3Si9O24Cl, and meionite, Ca4Al6Si6O24(SO4,CO3), in various proportions.
  • Since the Al–Si sites are partially occupied with a higher concentration of Si, the positions are labeled as Si.

Body-centered Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Cl} \\ \mathbf{B}_{2} & = & y_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + \left(x_{2}+y_{2}\right) \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + y_{2}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Na} \\ \mathbf{B}_{3} & = & -y_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \left(-x_{2}-y_{2}\right) \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}}-y_{2}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Na} \\ \mathbf{B}_{4} & = & x_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \left(x_{2}-y_{2}\right) \, \mathbf{a}_{3} & = & -y_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Na} \\ \mathbf{B}_{5} & = & -x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + \left(-x_{2}+y_{2}\right) \, \mathbf{a}_{3} & = & y_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Na} \\ \mathbf{B}_{6} & = & y_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{O I} \\ \mathbf{B}_{7} & = & -y_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{O I} \\ \mathbf{B}_{8} & = & x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{O I} \\ \mathbf{B}_{9} & = & -x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{O I} \\ \mathbf{B}_{10} & = & y_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{O II} \\ \mathbf{B}_{11} & = & -y_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{O II} \\ \mathbf{B}_{12} & = & x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{O II} \\ \mathbf{B}_{13} & = & -x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{O II} \\ \mathbf{B}_{14} & = & y_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \left(x_{5}+y_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Si I} \\ \mathbf{B}_{15} & = & -y_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \left(-x_{5}-y_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Si I} \\ \mathbf{B}_{16} & = & x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{3} & = & -y_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Si I} \\ \mathbf{B}_{17} & = & -x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{3} & = & y_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Si I} \\ \mathbf{B}_{18} & = & \left(y_{6}+z_{6}\right) \, \mathbf{a}_{1} + \left(x_{6}+z_{6}\right) \, \mathbf{a}_{2} + \left(x_{6}+y_{6}\right) \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + y_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O III} \\ \mathbf{B}_{19} & = & \left(-y_{6}+z_{6}\right) \, \mathbf{a}_{1} + \left(-x_{6}+z_{6}\right) \, \mathbf{a}_{2} + \left(-x_{6}-y_{6}\right) \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-y_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O III} \\ \mathbf{B}_{20} & = & \left(x_{6}+z_{6}\right) \, \mathbf{a}_{1} + \left(-y_{6}+z_{6}\right) \, \mathbf{a}_{2} + \left(x_{6}-y_{6}\right) \, \mathbf{a}_{3} & = & -y_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O III} \\ \mathbf{B}_{21} & = & \left(-x_{6}+z_{6}\right) \, \mathbf{a}_{1} + \left(y_{6}+z_{6}\right) \, \mathbf{a}_{2} + \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{3} & = & y_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O III} \\ \mathbf{B}_{22} & = & \left(-y_{6}-z_{6}\right) \, \mathbf{a}_{1} + \left(-x_{6}-z_{6}\right) \, \mathbf{a}_{2} + \left(-x_{6}-y_{6}\right) \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-y_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O III} \\ \mathbf{B}_{23} & = & \left(y_{6}-z_{6}\right) \, \mathbf{a}_{1} + \left(x_{6}-z_{6}\right) \, \mathbf{a}_{2} + \left(x_{6}+y_{6}\right) \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + y_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O III} \\ \mathbf{B}_{24} & = & \left(-x_{6}-z_{6}\right) \, \mathbf{a}_{1} + \left(y_{6}-z_{6}\right) \, \mathbf{a}_{2} + \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{3} & = & y_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O III} \\ \mathbf{B}_{25} & = & \left(x_{6}-z_{6}\right) \, \mathbf{a}_{1} + \left(-y_{6}-z_{6}\right) \, \mathbf{a}_{2} + \left(x_{6}-y_{6}\right) \, \mathbf{a}_{3} & = & -y_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O III} \\ \mathbf{B}_{26} & = & \left(y_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(x_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(x_{7}+y_{7}\right) \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + y_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O IV} \\ \mathbf{B}_{27} & = & \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(-x_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(-x_{7}-y_{7}\right) \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}}-y_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O IV} \\ \mathbf{B}_{28} & = & \left(x_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(x_{7}-y_{7}\right) \, \mathbf{a}_{3} & = & -y_{7}a \, \mathbf{\hat{x}} + x_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O IV} \\ \mathbf{B}_{29} & = & \left(-x_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(y_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(-x_{7}+y_{7}\right) \, \mathbf{a}_{3} & = & y_{7}a \, \mathbf{\hat{x}}-x_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O IV} \\ \mathbf{B}_{30} & = & \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{1} + \left(-x_{7}-z_{7}\right) \, \mathbf{a}_{2} + \left(-x_{7}-y_{7}\right) \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}}-y_{7}a \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O IV} \\ \mathbf{B}_{31} & = & \left(y_{7}-z_{7}\right) \, \mathbf{a}_{1} + \left(x_{7}-z_{7}\right) \, \mathbf{a}_{2} + \left(x_{7}+y_{7}\right) \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + y_{7}a \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O IV} \\ \mathbf{B}_{32} & = & \left(-x_{7}-z_{7}\right) \, \mathbf{a}_{1} + \left(y_{7}-z_{7}\right) \, \mathbf{a}_{2} + \left(-x_{7}+y_{7}\right) \, \mathbf{a}_{3} & = & y_{7}a \, \mathbf{\hat{x}}-x_{7}a \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O IV} \\ \mathbf{B}_{33} & = & \left(x_{7}-z_{7}\right) \, \mathbf{a}_{1} + \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{2} + \left(x_{7}-y_{7}\right) \, \mathbf{a}_{3} & = & -y_{7}a \, \mathbf{\hat{x}} + x_{7}a \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O IV} \\ \mathbf{B}_{34} & = & \left(y_{8}+z_{8}\right) \, \mathbf{a}_{1} + \left(x_{8}+z_{8}\right) \, \mathbf{a}_{2} + \left(x_{8}+y_{8}\right) \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}} + y_{8}a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{Si II} \\ \mathbf{B}_{35} & = & \left(-y_{8}+z_{8}\right) \, \mathbf{a}_{1} + \left(-x_{8}+z_{8}\right) \, \mathbf{a}_{2} + \left(-x_{8}-y_{8}\right) \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}}-y_{8}a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{Si II} \\ \mathbf{B}_{36} & = & \left(x_{8}+z_{8}\right) \, \mathbf{a}_{1} + \left(-y_{8}+z_{8}\right) \, \mathbf{a}_{2} + \left(x_{8}-y_{8}\right) \, \mathbf{a}_{3} & = & -y_{8}a \, \mathbf{\hat{x}} + x_{8}a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{Si II} \\ \mathbf{B}_{37} & = & \left(-x_{8}+z_{8}\right) \, \mathbf{a}_{1} + \left(y_{8}+z_{8}\right) \, \mathbf{a}_{2} + \left(-x_{8}+y_{8}\right) \, \mathbf{a}_{3} & = & y_{8}a \, \mathbf{\hat{x}}-x_{8}a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{Si II} \\ \mathbf{B}_{38} & = & \left(-y_{8}-z_{8}\right) \, \mathbf{a}_{1} + \left(-x_{8}-z_{8}\right) \, \mathbf{a}_{2} + \left(-x_{8}-y_{8}\right) \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}}-y_{8}a \, \mathbf{\hat{y}}-z_{8}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{Si II} \\ \mathbf{B}_{39} & = & \left(y_{8}-z_{8}\right) \, \mathbf{a}_{1} + \left(x_{8}-z_{8}\right) \, \mathbf{a}_{2} + \left(x_{8}+y_{8}\right) \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}} + y_{8}a \, \mathbf{\hat{y}}-z_{8}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{Si II} \\ \mathbf{B}_{40} & = & \left(-x_{8}-z_{8}\right) \, \mathbf{a}_{1} + \left(y_{8}-z_{8}\right) \, \mathbf{a}_{2} + \left(-x_{8}+y_{8}\right) \, \mathbf{a}_{3} & = & y_{8}a \, \mathbf{\hat{x}}-x_{8}a \, \mathbf{\hat{y}}-z_{8}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{Si II} \\ \mathbf{B}_{41} & = & \left(x_{8}-z_{8}\right) \, \mathbf{a}_{1} + \left(-y_{8}-z_{8}\right) \, \mathbf{a}_{2} + \left(x_{8}-y_{8}\right) \, \mathbf{a}_{3} & = & -y_{8}a \, \mathbf{\hat{x}} + x_{8}a \, \mathbf{\hat{y}}-z_{8}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{Si II} \\ \end{array} \]

References

  • J. J. Papike and T. Zoltai, The crystal structure of a marialite scapolite, Am. Mineral. 50, 641–655 (1965).
  • L. Pauling, The Structure of Some Sodium and Calcium Aluminosilicates, Proc. Natl. Acad. Sci. 16, 453–459 (1930), doi:10.1073/pnas.16.7.453.

Geometry files


Prototype Generator

aflow --proto=AB4C24D12_tI82_87_a_h_2h2i_hi --params=

Species:

Running:

Output: