Monazite (LaPO4) Structure : AB4C_mP24_14_e_4e_e

Picture of Structure; Click for Big Picture
Prototype : LaO4P
AFLOW prototype label : AB4C_mP24_14_e_4e_e
Strukturbericht designation : None
Pearson symbol : mP24
Space group number : 14
Space group symbol : $P2_{1}/c$
AFLOW prototype command : aflow --proto=AB4C_mP24_14_e_4e_e
--params=
$a$,$b/a$,$c/a$,$\beta$,$x_{1}$,$y_{1}$,$z_{1}$,$x_{2}$,$y_{2}$,$z_{2}$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$,$x_{5}$,$y_{5}$,$z_{5}$,$x_{6}$,$y_{6}$,$z_{6}$


Other compounds with this structure

  • CePO4 (monazite–Ce), PrPO4 (monazite–Pr), NdPO4 (monazite–Nd), SmPO4 (monazite–Sm), EuPO4 (monazite–Eu), LaAsO4 (gasparite–La), and CeAsO4 (gasparite–Ce)

  • Monazites ($RE$–PO4) and gasparites ($RE$–AsO4) can have a mixture of rare earth elements in the $RE$ slot of the formula. Technically these minerals are called monazite–(X) and gasparite–(X), where X is the predominant rare earth element in the sample. All of the structures are similar, but we must pick one as the prototype, so we take the first entry in (Ni, 1995) to define the class.
  • (Ni, 1995) gives the structural data in the $P21/n$ setting of space group #14. We used FINDSYM to change this to our standard $P2_{1}/c$ setting. This involves a change of primitive vectors as well as a rotation of the crystal.
  • This structure has the same AFLOW label as NH4SO4, $K4_{1}$. The structures are generated by the same symmetry operations with different sets of parameters (\texttt––params) specified in their corresponding CIF files.

Simple Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & \left(x_{1}a+z_{1}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{1}b \, \mathbf{\hat{y}} + z_{1}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{La} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{1}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{1}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{1}a - z_{1}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{1}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{1}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{La} \\ \mathbf{B}_{3} & = & -x_{1} \, \mathbf{a}_{1}-y_{1} \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & \left(-x_{1}a-z_{1}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{1}b \, \mathbf{\hat{y}}-z_{1}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{La} \\ \mathbf{B}_{4} & = & x_{1} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{1}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{1}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{1}a + z_{1}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{1}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{1}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{La} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \left(x_{2}a+z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O I} \\ \mathbf{B}_{6} & = & -x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{2}a - z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{2}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{2}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O I} \\ \mathbf{B}_{7} & = & -x_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \left(-x_{2}a-z_{2}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}}-z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O I} \\ \mathbf{B}_{8} & = & x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{2}a + z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{2}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O I} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O II} \\ \mathbf{B}_{10} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{3}a - z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{3}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O II} \\ \mathbf{B}_{11} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O II} \\ \mathbf{B}_{12} & = & x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{3}a + z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{3}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O II} \\ \mathbf{B}_{13} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O III} \\ \mathbf{B}_{14} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{4}a - z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O III} \\ \mathbf{B}_{15} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}a-z_{4}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}}-z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O III} \\ \mathbf{B}_{16} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{4}a + z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{4}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O III} \\ \mathbf{B}_{17} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(x_{5}a+z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O IV} \\ \mathbf{B}_{18} & = & -x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{5}a - z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{5}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O IV} \\ \mathbf{B}_{19} & = & -x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(-x_{5}a-z_{5}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}}-z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O IV} \\ \mathbf{B}_{20} & = & x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{5}a + z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{5}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O IV} \\ \mathbf{B}_{21} & = & x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(x_{6}a+z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{P} \\ \mathbf{B}_{22} & = & -x_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{6}a - z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{6}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{P} \\ \mathbf{B}_{23} & = & -x_{6} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \left(-x_{6}a-z_{6}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}}-z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{P} \\ \mathbf{B}_{24} & = & x_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{6}a + z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{6}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{P} \\ \end{array} \]

References

  • Y. Ni, J. M. Hughes, and A. N. Mariano, Crystal chemistry of the monazite and xenotime structures, Am. Mineral. 80, 21–26 (1995).

Found in

  • O. S. Vereshchagin, S. N. Britvin, E. N. Perova, A. I. Brusnitsyn, Y. S. Polekhovsky, V. V. Shilovskikh, V. N. Bocharov, A. van der Burgt, S. Cuchet, and N. Meisser, Gasparite–(La), La(AsO4), a new mineral from Mn ores of the Ushkatyn–III deposit, Central Kazakhstan, and metamorphic rocks of the Wanni glacier, Switzerland, Am. Mineral. 104, 1469–1480 (2019), doi:10.2138/am-2019-7028.

Geometry files


Prototype Generator

aflow --proto=AB4C_mP24_14_e_4e_e --params=

Species:

Running:

Output: