AlPO4 low cristobalite type Structure : AB4C_oC24_20_b_2c_a

Picture of Structure; Click for Big Picture
Prototype : AlO4P
AFLOW prototype label : AB4C_oC24_20_b_2c_a
Strukturbericht designation : None
Pearson symbol : oC24
Space group number : 20
Space group symbol : $C222_{1}$
AFLOW prototype command : aflow --proto=AB4C_oC24_20_b_2c_a
--params=
$a$,$b/a$,$c/a$,$x_{1}$,$y_{2}$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$


Other compounds with this structure

  • GaPO4

  • Aluminum and Gallium Phosphate are closely related to the low cristobalite structure of SiO2.
  • The change in symmetry from $Fd\overline{3}m$ in SiO2 to $C222_{1}$ in AlPO4 is caused by the replacement of the silicon atoms by two types of atoms.
  • The structure is pseudo–tetragonal, with $a = b$, but the presence of ordered aluminum and phosphorus atoms reduces the symmetry to orthogonal.

Base-centered Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} & = & x_{1}a \, \mathbf{\hat{x}} & \left(4a\right) & \mbox{P} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P} \\ \mathbf{B}_{3} & = & -y_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & y_{2}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Al} \\ \mathbf{B}_{4} & = & y_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -y_{2}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Al} \\ \mathbf{B}_{5} & = & \left(x_{3}-y_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+y_{3}\right) \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{O I} \\ \mathbf{B}_{6} & = & \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{O I} \\ \mathbf{B}_{7} & = & \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{O I} \\ \mathbf{B}_{8} & = & \left(x_{3}+y_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{O I} \\ \mathbf{B}_{9} & = & \left(x_{4}-y_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{O II} \\ \mathbf{B}_{10} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{O II} \\ \mathbf{B}_{11} & = & \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{O II} \\ \mathbf{B}_{12} & = & \left(x_{4}+y_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{O II} \\ \end{array} \]

References

  • R. C. L. Mooney, The crystal structure of aluminium phosphate and gallium phosphate, low–cristobalite type, Acta Cryst. 9, 728–734 (1956), doi:10.1107/S0365110X56001996.

Found in

  • D. M. Hatch, S. Ghose, and J. L. Bjorkstam, The $\alpha$–$\beta$ phase transition in AlPO4 cristobalite: Symmetry analysis, domain structure and transition dynamics, Phys. Chem. Miner. 21, 67–77 (1994), doi:10.1007/BF00205217.

Geometry files


Prototype Generator

aflow --proto=AB4C_oC24_20_b_2c_a --params=

Species:

Running:

Output: