Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB4C_tP12_129_c_i_a

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
  • D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

NH4Br ($B25$) Structure : AB4C_tP12_129_c_i_a

Picture of Structure; Click for Big Picture
Prototype : BrH4N
AFLOW prototype label : AB4C_tP12_129_c_i_a
Strukturbericht designation : $B25$
Pearson symbol : tP12
Space group number : 129
Space group symbol : $P4/nmm$
AFLOW prototype command : aflow --proto=AB4C_tP12_129_c_i_a
--params=
$a$,$c/a$,$z_{2}$,$y_{3}$,$z_{3}$


Other compounds with this structure

  • NH4I

  • Data was taken at 100 °C using deuterium.
  • The atomic positions were given for setting 1 of space group #129. We have shifted this to setting 2, placing the origin at the inversion site of the structure.

Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} & \left(2a\right) & \text{N} \\ \mathbf{B}_{2} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} & \left(2a\right) & \text{N} \\ \mathbf{B}_{3} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(2c\right) & \text{Br} \\ \mathbf{B}_{4} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(2c\right) & \text{Br} \\ \mathbf{B}_{5} & = & \frac{1}{4} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8i\right) & \text{H} \\ \mathbf{B}_{6} & = & \frac{1}{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{3}\right)a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8i\right) & \text{H} \\ \mathbf{B}_{7} & = & \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-y_{3}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8i\right) & \text{H} \\ \mathbf{B}_{8} & = & y_{3} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8i\right) & \text{H} \\ \mathbf{B}_{9} & = & \frac{3}{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{3}\right)a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8i\right) & \text{H} \\ \mathbf{B}_{10} & = & \frac{3}{4} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8i\right) & \text{H} \\ \mathbf{B}_{11} & = & \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{3}\right)a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8i\right) & \text{H} \\ \mathbf{B}_{12} & = & -y_{3} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8i\right) & \text{H} \\ \end{array} \]

References

  • H. A. Levy and S. W. Peterson, Neutron Diffraction Determination of the Crystal Structure of Ammonium Bromide in Four Phases, J. Am. Chem. Soc. 75, 1536–1542 (1953), doi:10.1021/ja01103a006.

Geometry files


Prototype Generator

aflow --proto=AB4C_tP12_129_c_i_a --params=

Species:

Running:

Output: