$D2_{2}$ (MgZn5?) (problematic) Structure : AB5_mC48_12_2i_ac5i2j

Picture of Structure; Click for Big Picture
Prototype : MgZn5
AFLOW prototype label : AB5_mC48_12_2i_ac5i2j
Strukturbericht designation : $D2_{2}$
Pearson symbol : mC48
Space group number : 12
Space group symbol : $C2/m$
AFLOW prototype command : aflow --proto=AB5_mC48_12_2i_ac5i2j
--params=
$a$,$b/a$,$c/a$,$\beta$,$x_{3}$,$z_{3}$,$x_{4}$,$z_{4}$,$x_{5}$,$z_{5}$,$x_{6}$,$z_{6}$,$x_{7}$,$z_{7}$,$x_{8}$,$z_{8}$,$x_{9}$,$z_{9}$,$x_{10}$,$y_{10}$,$z_{10}$,$x_{11}$,$y_{11}$,$z_{11}$


  • This structure has problems similar to the $B30$ MgZn structure, and for the same reasons. (Hermann, 1937) assigned this the Strukturbericht designation $D2_{2}$, based on the paper of (Tarschish, 1933), who derived it from the hexagonal Laves structure MgZn2 (C14), eventually resulting in a 48 atom cell with composition MgZn5. As with MgZn, he assumed that the space group remained $P6_{3}/mmc$ #194.
  • (McKeehan, 1935) again pointed out that this is impossible. (Hermann, 1937) referenced both papers, giving the space group as $P6_{3}/mmc$ but listing the atomic coordinates enumerated by McKeehan.
  • The McKeehan structure has space group $C2/m$ #12, with 48 atoms in the conventional cell, and 24 atoms in the primitive cell. As with $B30$, this agrees with the structure (Parthé, 1993) designate as $D2_{2}$.
  • It is not clear that any MgZn5 compound actually exists. It does not appear in the assessed Mg–Zn binary phase diagram (Massalski, 1990). It may actually be the Mg2Zn11 $D8_{c}$ structure, but we have found no literature supporting this claim.

Base-centered Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Zn I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c\cos\beta \, \mathbf{\hat{x}} + \frac{1}{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2c\right) & \mbox{Zn II} \\ \mathbf{B}_{3} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Mg I} \\ \mathbf{B}_{4} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Mg I} \\ \mathbf{B}_{5} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Mg II} \\ \mathbf{B}_{6} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}a-z_{4}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Mg II} \\ \mathbf{B}_{7} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(x_{5}a+z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Zn III} \\ \mathbf{B}_{8} & = & -x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(-x_{5}a-z_{5}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Zn III} \\ \mathbf{B}_{9} & = & x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(x_{6}a+z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Zn IV} \\ \mathbf{B}_{10} & = & -x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \left(-x_{6}a-z_{6}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Zn IV} \\ \mathbf{B}_{11} & = & x_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(x_{7}a+z_{7}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Zn V} \\ \mathbf{B}_{12} & = & -x_{7} \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & \left(-x_{7}a-z_{7}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Zn V} \\ \mathbf{B}_{13} & = & x_{8} \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \left(x_{8}a+z_{8}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Zn VI} \\ \mathbf{B}_{14} & = & -x_{8} \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & \left(-x_{8}a-z_{8}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Zn VI} \\ \mathbf{B}_{15} & = & x_{9} \, \mathbf{a}_{1} + x_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & \left(x_{9}a+z_{9}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{9}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Zn VII} \\ \mathbf{B}_{16} & = & -x_{9} \, \mathbf{a}_{1}-x_{9} \, \mathbf{a}_{2}-z_{9} \, \mathbf{a}_{3} & = & \left(-x_{9}a-z_{9}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{9}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Zn VII} \\ \mathbf{B}_{17} & = & \left(x_{10}-y_{10}\right) \, \mathbf{a}_{1} + \left(x_{10}+y_{10}\right) \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & \left(x_{10}a+z_{10}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{10}b \, \mathbf{\hat{y}} + z_{10}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Zn VIII} \\ \mathbf{B}_{18} & = & \left(-x_{10}-y_{10}\right) \, \mathbf{a}_{1} + \left(-x_{10}+y_{10}\right) \, \mathbf{a}_{2}-z_{10} \, \mathbf{a}_{3} & = & \left(-x_{10}a-z_{10}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{10}b \, \mathbf{\hat{y}}-z_{10}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Zn VIII} \\ \mathbf{B}_{19} & = & \left(-x_{10}+y_{10}\right) \, \mathbf{a}_{1} + \left(-x_{10}-y_{10}\right) \, \mathbf{a}_{2}-z_{10} \, \mathbf{a}_{3} & = & \left(-x_{10}a-z_{10}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{10}b \, \mathbf{\hat{y}}-z_{10}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Zn VIII} \\ \mathbf{B}_{20} & = & \left(x_{10}+y_{10}\right) \, \mathbf{a}_{1} + \left(x_{10}-y_{10}\right) \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & \left(x_{10}a+z_{10}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{10}b \, \mathbf{\hat{y}} + z_{10}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Zn VIII} \\ \mathbf{B}_{21} & = & \left(x_{11}-y_{11}\right) \, \mathbf{a}_{1} + \left(x_{11}+y_{11}\right) \, \mathbf{a}_{2} + z_{11} \, \mathbf{a}_{3} & = & \left(x_{11}a+z_{11}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{11}b \, \mathbf{\hat{y}} + z_{11}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Zn IX} \\ \mathbf{B}_{22} & = & \left(-x_{11}-y_{11}\right) \, \mathbf{a}_{1} + \left(-x_{11}+y_{11}\right) \, \mathbf{a}_{2}-z_{11} \, \mathbf{a}_{3} & = & \left(-x_{11}a-z_{11}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{11}b \, \mathbf{\hat{y}}-z_{11}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Zn IX} \\ \mathbf{B}_{23} & = & \left(-x_{11}+y_{11}\right) \, \mathbf{a}_{1} + \left(-x_{11}-y_{11}\right) \, \mathbf{a}_{2}-z_{11} \, \mathbf{a}_{3} & = & \left(-x_{11}a-z_{11}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{11}b \, \mathbf{\hat{y}}-z_{11}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Zn IX} \\ \mathbf{B}_{24} & = & \left(x_{11}+y_{11}\right) \, \mathbf{a}_{1} + \left(x_{11}-y_{11}\right) \, \mathbf{a}_{2} + z_{11} \, \mathbf{a}_{3} & = & \left(x_{11}a+z_{11}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{11}b \, \mathbf{\hat{y}} + z_{11}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Zn IX} \\ \end{array} \]

References

  • C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928–1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
  • L. Tarschisch, Röntgenographische Untersuchung der Verbindungen MgZn und MgZn5, Zeitschrift für Kristallographie – Crystalline Materials 86, 423–438 (1933), doi:10.1524/zkri.1933.86.1.423.
  • L. W. McKeehan, Note on MgZn and MgZn5, Zeitschrift für Kristallographie – Crystalline Materials 91, 501–503 (1935), doi:10.1524/zkri.1935.91.1.501.
  • E. Parthé, L. Gelato, B. Chabot, M. Penso, K. Cenzual, and R. Gladyshevskii, in Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types (Springer–Verlag, Berlin, Heidelberg, 1993), Gmelin Handbook of Inorganic and Organometallic Chemistry, vol. 2, chap. Crystal Chemical Characterization of Inorganic Structure Types, 8 edn., doi:10.1007/978-3-662-02909-1_3.
  • T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, eds., Binary Alloy Phase Diagrams, vol. 3 (ASM International, Materials Park, Ohio, USA, 1990), 2nd edn. Hf–Re to Zn–Zr.
  • M. Mezbahul–Islam, A. O. Mostafa, and M. Medraj, Essential Magnesium Alloys Binary Phase Diagrams and Their Thermochemical Data, J. Mater. 2014, 704283 (2014), doi:10.1155/2014/704283.

Geometry files


Prototype Generator

aflow --proto=AB5_mC48_12_2i_ac5i2j --params=

Species:

Running:

Output: