BeSO4·4H2O ($H4_{3}$) Structure : AB8C8D_tI72_120_c_2i_2i_b

Picture of Structure; Click for Big Picture
Prototype : BeH8O8S
AFLOW prototype label : AB8C8D_tI72_120_c_2i_2i_b
Strukturbericht designation : $H4_{3}$
Pearson symbol : tI72
Space group number : 120
Space group symbol : $I\bar{4}c2$
AFLOW prototype command : aflow --proto=AB8C8D_tI72_120_c_2i_2i_b
--params=
$a$,$c/a$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$,$x_{5}$,$y_{5}$,$z_{5}$,$x_{6}$,$y_{6}$,$z_{6}$


  • The original determination of the $H4_{3}$ structure did not locate the positions of the hydrogen atoms. Since (Sikka, 1969) showed that the placement of the hydrogen atoms did not substantially affect the positions of the other atoms in the primitive cell, nor change the space group, we retain the original Strukturbericht designation for the improved structure.

Body-centered Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{S} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{S} \\ \mathbf{B}_{3} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Be} \\ \mathbf{B}_{4} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Be} \\ \mathbf{B}_{5} & = & \left(y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{H I} \\ \mathbf{B}_{6} & = & \left(-y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{H I} \\ \mathbf{B}_{7} & = & \left(-x_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{H I} \\ \mathbf{B}_{8} & = & \left(x_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(-y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{H I} \\ \mathbf{B}_{9} & = & \left(\frac{1}{2} - y_{3} + z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3} + z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{H I} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} +y_{3} + z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3} + z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{H I} \\ \mathbf{B}_{11} & = & \left(\frac{1}{2} +x_{3} - z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3} - z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{H I} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} - x_{3} - z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3} - z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{H I} \\ \mathbf{B}_{13} & = & \left(y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{H II} \\ \mathbf{B}_{14} & = & \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{H II} \\ \mathbf{B}_{15} & = & \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{H II} \\ \mathbf{B}_{16} & = & \left(x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{H II} \\ \mathbf{B}_{17} & = & \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{H II} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} +y_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{H II} \\ \mathbf{B}_{19} & = & \left(\frac{1}{2} +x_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{H II} \\ \mathbf{B}_{20} & = & \left(\frac{1}{2} - x_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{H II} \\ \mathbf{B}_{21} & = & \left(y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}+y_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O I} \\ \mathbf{B}_{22} & = & \left(-y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}-y_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O I} \\ \mathbf{B}_{23} & = & \left(-x_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{3} & = & y_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O I} \\ \mathbf{B}_{24} & = & \left(x_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(-y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{3} & = & -y_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O I} \\ \mathbf{B}_{25} & = & \left(\frac{1}{2} - y_{5} + z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5} + z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}}-y_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O I} \\ \mathbf{B}_{26} & = & \left(\frac{1}{2} +y_{5} + z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5} + z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + y_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O I} \\ \mathbf{B}_{27} & = & \left(\frac{1}{2} +x_{5} - z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{5} - z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}+y_{5}\right) \, \mathbf{a}_{3} & = & y_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O I} \\ \mathbf{B}_{28} & = & \left(\frac{1}{2} - x_{5} - z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{5} - z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}-y_{5}\right) \, \mathbf{a}_{3} & = & -y_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O I} \\ \mathbf{B}_{29} & = & \left(y_{6}+z_{6}\right) \, \mathbf{a}_{1} + \left(x_{6}+z_{6}\right) \, \mathbf{a}_{2} + \left(x_{6}+y_{6}\right) \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + y_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O II} \\ \mathbf{B}_{30} & = & \left(-y_{6}+z_{6}\right) \, \mathbf{a}_{1} + \left(-x_{6}+z_{6}\right) \, \mathbf{a}_{2} + \left(-x_{6}-y_{6}\right) \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-y_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O II} \\ \mathbf{B}_{31} & = & \left(-x_{6}-z_{6}\right) \, \mathbf{a}_{1} + \left(y_{6}-z_{6}\right) \, \mathbf{a}_{2} + \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{3} & = & y_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O II} \\ \mathbf{B}_{32} & = & \left(x_{6}-z_{6}\right) \, \mathbf{a}_{1} + \left(-y_{6}-z_{6}\right) \, \mathbf{a}_{2} + \left(x_{6}-y_{6}\right) \, \mathbf{a}_{3} & = & -y_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O II} \\ \mathbf{B}_{33} & = & \left(\frac{1}{2} - y_{6} + z_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{6} + z_{6}\right) \, \mathbf{a}_{2} + \left(x_{6}-y_{6}\right) \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}}-y_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O II} \\ \mathbf{B}_{34} & = & \left(\frac{1}{2} +y_{6} + z_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{6} + z_{6}\right) \, \mathbf{a}_{2} + \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + y_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O II} \\ \mathbf{B}_{35} & = & \left(\frac{1}{2} +x_{6} - z_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{6} - z_{6}\right) \, \mathbf{a}_{2} + \left(x_{6}+y_{6}\right) \, \mathbf{a}_{3} & = & y_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O II} \\ \mathbf{B}_{36} & = & \left(\frac{1}{2} - x_{6} - z_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{6} - z_{6}\right) \, \mathbf{a}_{2} + \left(-x_{6}-y_{6}\right) \, \mathbf{a}_{3} & = & -y_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{O II} \\ \end{array} \]

References

  • S. K. Sikka and R. Chidambaram, A neutron diffraction determination of the structure of beryllium sulphate tetrahydrate, BeSO4·4H2O, Acta Crystallogr. Sect. B Struct. Sci. 25, 310–315 (1969), doi:10.1107/S0567740869002160.

Geometry files


Prototype Generator

aflow --proto=AB8C8D_tI72_120_c_2i_2i_b --params=

Species:

Running:

Output: