Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC_oP6_59_a_b_a

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
  • D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

FeOCl ($E0_{5}$) Structure: ABC_oP6_59_a_b_a

Picture of Structure; Click for Big Picture
Prototype : FeOCl
AFLOW prototype label : ABC_oP6_59_a_b_a
Strukturbericht designation : $E0_{5}$
Pearson symbol : oP6
Space group number : 59
Space group symbol : $Pmmn$
AFLOW prototype command : aflow --proto=ABC_oP6_59_a_b_a
--params=
$a$,$b/a$,$c/a$,$z_{1}$,$z_{2}$,$z_{3}$


Other compounds with this structure

  • AlOCl, CrOCl, HfNBr, HfNCl, HfNI, IOBr, IOCl, TiNBr, TiNCl, TiNI, TiOCl, VOCl, ZrNBr, ZrNCl, ZrNI, $M$OCl, ($M$ = Ti, V, Cr, Fe), the superconducting alkali metal intercalcates α–$M$N$X$ ($M$ = Ti, Zr, Hf; $X$ = Cl, Br, I).

Simple Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(2a\right) & \text{Cl} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{1}c \, \mathbf{\hat{z}} & \left(2a\right) & \text{Cl} \\ \mathbf{B}_{3} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(2a\right) & \text{O} \\ \mathbf{B}_{4} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(2a\right) & \text{O} \\ \mathbf{B}_{5} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(2b\right) & \text{Fe} \\ \mathbf{B}_{6} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(2b\right) & \text{Fe} \\ \end{array} \]

References

  • S. M. Kauzlarich, J. L. Stanton, J. Faber, and B. A. Averill, Neutron profile refinement of the structure of FeOCl and FeOCl(TTF)1/8.5, J. Am. Chem. Soc. 108, 7946–7951 (1986), doi:10.1021/ja00285a011.

Geometry files


Prototype Generator

aflow --proto=ABC_oP6_59_a_b_a --params=

Species:

Running:

Output: